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Noncontinuous Minkowskian Spacetime 

Andreas Kull 1 and Rudolf  A. Treumann 1~ 

Received May 10, 1994 

A model for a noncontinuous spacetime is considered, which is based on a 
generalization of the manifold concept, known as d-space. As a consequence of 
its construction, the model possesses a metric of Lorentzian signature and a 
generalized form of Lorentz invariance. The model may be considered as defining 
a class of discrete spacetimes within the framework of the d-space representation 
of general relativity. 

1. INTRODUCTION 

Spacetime is conventionally based on the manifold concept and the 
requirement of a metric of Lorentzian signature. Though intuitive, the assump- 
tion of universal continuity is debatable. Applying quantum mechanical argu- 
ments, it seems natural to include the possibility that at microscopic scales 
of the order of the Planck scale spacetime may become discrete. Historically, 
the idea that space could become discrete goes back to Riemann (1919), 
who reflected about a natural measure of space. Attempts to consider space- 
time discrete have subsequently been undertaken in order to investigate the 
effects of introducing a hypothetical constant length e into the theory of 
elementary particles (Heisenberg, 1942), construct a discrete spacetime by 
extending it to five dimensions (Snyder, 1947), or, at the expense of violation 
of Lorentz invariance, replace Minkowski spacetime with a cellular model 
of spacetime (Das, 1960). More recently, it has been hypothesized (Bombelli 
et  al., 1987) that microscopic spacetime possesses the structure of a partially 
ordered set of points. These authors investigated the mathematical relation 
between such a set and a corresponding smooth manifold. It was demonstrated 
subsequently (Brightwell and Gregory, 1991 ) that if the point set is of random 
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character, a certain smoothing (coarse graining) leads to the wanted manifold 
properties. The philosophy underlying these approaches culminates in the 
wish to root the classical continuous spacetime in a discrete one, having 
causal structure. The basic motivation for introducing discrete spacetimes 
arises from the conceptual problems of quantum gravity, singularities of 
general relativity, and the divergence problem in quantum field theories. 

Recently it has been proposed (Gruszczak et al., 1988; Heller, 1989) 
to identify spacetime with d-spaces in place of manifolds. The d-space concept 
(Sikorsky, 1992) generalizes the concept of manifolds by dropping the axiom 
which makes sure that the manifold is locally diffeomorphic to R n, retaining 
that large parts of differential geometry are applicable to d-spaces. Since 
every subset of R" can be made into a d-space, the d-space concept provides 
a convenient tool to treat those subsets of R n which cannot be identified 
with manifolds in analogy to manifolds. In order to find a representation of 
spacetimes which is of greater generality than manifold-based spacetimes, 
we follow the suggestion (Gruszczak et al., 1988; Heller et  al., 1989) to 
seek for a possible representation of spacetime in terms of d-spaces. A 
requirement on such a representation (Gruszczak et  al., 1988) is the existence 
of a metric of Lorentzian signature on the d-space under consideration. 

As done in Multarzynski and Heller (1992), the mathematical framework 
of the d-space concept may be used to treat the singularities of spacetimes 
based on the manifold concept. But it also provides a means for treating a 
class of entirely different spacetimes; in particular, spacetimes which are not 
diffeomorphic to R n. In this paper we focus on the latter problem by presenting 
a Minkowsk ian  d-space. As consequence of its construction, the d-space 
possesses a metric of Lorentzian signature and a generalized form of Lorentz 
invariance. As will be outlined in the last section, the spacetime represented 
by the proposed d-space is a two-dimensional massless solution of a general- 
ized form of the Einstein equations. Besides, it may be considered as defining 
a class of (not massless) solutions by the demand that its solutions are, 
according to the common structure of general relativity, locally diffeomorphic 
to the Minkowsk ian  d-space under consideration. 

2. THE d-SPACE FORMALISM 

Let a smooth manifold be defined as a pair (M, C) where C is a family 
of real functions on an (abstract) set M, satisfying suitable axioms. These 
axioms can be summarized for short by (i) C is closed with respect to 
localization and (ii) C is closed with respect to composition of the set % of 
all C =-functions on R ". Axiom (iii) states that M is locally diffeomorphic 
to R ". It may be proven that the manifold definition by axioms (i)-(iii)  and 
the one in the ordinary terms of equivalence classes of atlases are equivalent 
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(Gruszczak et al., 1988). By dropping axiom (iii), one obtains a more general 
structure called a differential space or d-space. C is said to be the d-structure 
on the support M, and the pair (M, C) denotes the d-space. It may be shown 
(Gruszczak et al., 1988) that for every family of functions Co inducing a 
topology Tco on M, there exists a smallest family of functions C defining a 
d-structure on M such that Co C C and the topology Tco coincides with the 
topology Tc on M. The Co is said to generate the d-structure C of the d- 
space (M, C). According to the common interpretation (Gruszczak et al., 
1988; Heller et al., 1989), the family Co represents the family of scalar fields 
which provides information about measurements on M, i.e., Co contains all 
physical information of (M, C). 

3. CONSTRUCTION OF THE d-SPACE 

In this section, the following idea is pursued: A subset M of R 2 which 
is nowhere diffeomorphic to R 2 and possesses certain invariance properties 
is transformed into a d-space in order to obtain a mathematically treatable rep- 
resentation. 

Before transforming M into a d-space (M, C) it may be convenient to 
add some remarks about the mentioned invariance properties of M. First, let 
the subset M of R 2 be defined by the following expression: 

M = { n ( r 2 + s 2 ) ' n ( r 2 - s 2 ) }  C R 2 m  (1) 

with r, s, n, m ~ Z\{0}. Second, consider the family of mappings + defined by 

~b: M ~ M  

+(p) = Apl (2) 

with A = A(v) = A(r, s) where, again with r, s E Z\{0}, 

F 2 --  S 2 
V - -  r 2 + s 2 

A(v) ( 1 - v 2 )  I/2 - v  

1 f r 2 + s 2 - - ( r  2 -  s2)~ 

- 2 r s ~ - ( r  2 -  s 2) r2 + s2 j = A(r ,s)  

It may be easily shown that (i) the elements q~ ~ + map onto M, that (ii) 
(+, o) possesses group structure, and that (iii) (~b, o) is a subgroup of the 
common (1 + 1 )-dimensional Lorentz group (using natural units). Together 



438 KuU and Treumann 

with the discreteness of M, these are the properties which let M be of interest 
for the representation of spacetime. 

The transformation of M into a d-space (M, C) involves the definition 
of the family of mappings Co which generates the d-structure C of the d- 
space (M, C). Let the family Co be defined by 

Do = {w;: R 2 ~ R}, i = 0, 1 (4) 

"/'['i: R2 ~ (x0, Xl ) ~ x i  

together with the restriction 

C O = Dol  M ( 5 )  

As result of this construction, the topology/'Co coincides with the topology 
on M induced from R 2 and Co generates the d-structure C = %IM, where % 
denotes the set of all Ca-functions on R 2. The support M together with the 
d-structure C form the specific d-space (M, C). In analogy, (R 2, % ) represents 
a d-space which is diffeomorphic to R 2. Since M C R 2 and Co = D01M, (M, 
C) is a d-subspace of the d-space (R 2, %). 

Most of the mathematics on d-spaces is developed in terms of tangent 
vectors and tangent spaces. Tangent vectors to (M, C) at p ~ M are linear 
mappings v: C ~ R satisfying the Leibniz condition v( fg)  = v( f )g(p)  + 
f (p)v (g) .  Since M is dense and Co C %, the limes 

(r, xl) ,  (Xo, s), (r, s) E M 

h(xo, s) - h(r, s) 

x o -  r 

h(r, x l )  - h(r, s) 

h e  C, 

Oh = lim 
-~oXO (r,s ) xo~r 

Oh = lim 
-~lXl(r,s) Xl'-*s X 1 - -  S 

exist and the two mappings v~ and v2, defined by 

vi: C ~ R ,  H ~ C, i = O, 1 

(6) 

Oh 
vi(h) = ~ 

(7) 

form two tangent vectors to (M, C) at p e M. The set of all tangent vectors 
to (M, C) at p is called the tangent space to (M, C) at p and is denoted by 
Mp. Notice that the tangent space M e is a vector space and, since v~ and v2 
are linearly independent, vl and v2 form a basis of Alp. Because the local 
dimension of (M, C), dimp((M, C)), defined as the dimension of the tangent 
space Mp at p e M, is constant on M, the global dimension of (M, C) is 
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Dim((M, C)) = dimp((M, C)) = 2, This is an important result, since it 
allows us to define a scalar product on Mp and on (M, C), respectively. 

Consider now the tangent vector fields V~ and V2 defined by 

Vi: M 3 p ~ Vi(p) E Mp C ~Jq~M Mq, i = O, 1 
(8) 

d 
V/(p) = ~X-~Xip 

According to the d-space terminology, since the mapping 

V~(.)(p): M ~ p -* V~(p)(h) e R, i = 0, 1 (9) 

is an element of C for every f E C, V1 and V2 are said to be smooth. The 
set af(M) of all smooth tangent vector fields on (M, C) is a module over C. 
Since Vl and V2 are linearly independent and Vl(p) and V2(p) form a basis 
of M e, the tangent vector fields V1 and V2 form a basis of af(M). The dual 
basis V 1 and V 2 ofaf(M) is given by the differentials dx0 and dxl, respectively~ 

A scalar product G on Mp and af(M), respectively, is defined by 

G: af X af~C 
(10) 

G(U, W) = UlWl - UzWz 

with U, W E af(M). With respect to the scalar product G, V~(p) and Vz(p) 
form an orthonormal vector basis of M e, while V1 and V2 form one of af(M). 
The index of af(M), defined as number of minus signs in the expression 

G(Vi, V~) = ei = +1, i = 0, 1 (11) 

is 1. Hence, af(M) is a Lorentz module on (M, C), and the triple (M, C, G) 
is a Lorentz d-space. 

Two d-spaces (M, C) and (N, D) are said to be diffeomorphic if the 
mappings ~, t~ -1 exist such that qJ: M ~ N andfo  ~ ~ C for everyf  ~ D. 
Thus, according to the d-space terminology, the family of mappings ~b defined 
in (3) and interpreted as 

qb: (M, C) ~ (M, C) (12) 

is a group (+, o) of diffeomorphisms onto (M, C). Since, as may be shown 
by direct calculation, the mappings ~b ~ q~: (M, C) ~ (M, C) preserve the 
scalar product G, (+, o) establishes a group of isometric diffeomorphisms 
onto M. Therefore, the Lorentzian d-space (M, C, G) possesses two important 
properties of special relativity: (i) G is a scalar product (or metric) of 
Lorentzian signature, and (ii) the family qb establishes a group of isometric 
diffeomorphisms onto (M, C, G). Besides this invariance of (M, C, G) under 
the group (+, o) there exists another link between the d-space (M, C, G) and 
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the family ~b, since the parameter range of the family + is definable by the 
range of the function v ~ C, 

x1 
v: M ~ R, V(Xo, xl)  = - -  

xo 

One may interpret the Lorentz d-space (M, C, G) as a complete d-space 
analog to a ( 1 + 1 )-dimensional subset of the ordinary Minkowski spacetime. 
This property suggests that we denote the d-space (M, C, G) as Minkowskian 
d-space and to consider the invariance of (M, C, G) and other entities under 
the group (d~, o) as a generalized form of two-dimensional Lorentz invariance. 

The straightforward extension of the d-space (M, C, G) to a four- 
dimensional d-space (M', C', G ' )  which preserves the essential properties 
of (M, C, G) proceeds by reinterpreting, geometrically speaking, xi in the 
set M as a radial coordinate in a spherical, three-dimensional representation. 
By this procedure M is extended to a four-dimensional set M'. Such an 
extension resembles the transition from two to four dimensions in special 
relativity, where it is achieved by considering spatial rotations. The family 
Co will also have to be extended, and the family of diffeomorphisms ~b would 
incorporate rotations in the coordinates x~, x2, x3. Such an extension will, 
however, not lead to any new essential properties besides providing by the d- 
space (M', C', G ' )  an analog to the four-dimensional Minkowski spacetime. 

To finish this section let us briefly consider the d-subspace 
(OM, %I~M) of (R 2, % ). In view of the completion of (M, C) in order to achieve 

a d-space (M', C'),  which is diffeomorphic to (R 2, %), (0M, % I oM) represents 

the boundary of (M, C). Since the boundary (OM, %l~t) and (M, C) are d- 

subspaces of (R 2, % ), according to a common classification scheme (Ellis and 
Schmidt, 1977), the boundary is of regular character. In other words, the 
singularities of (M, C) which prevent (M, C) from being diffeomorphic to 
(R E, %) are removable; the d-space (M, C) may be extended to a d-space 
which is diffeomorphic to (R z, % ) without changing its topology. 

4. CONCLUSIONS 

In the previous section, a Minkowskian d-space (M, C, G) was con- 
structed. Here we infer its physical content and possible interpretation. 
According to the properties of (M, C, G) discussed above, the d-space (M, 
C, G) corresponds to an equivalence class of manifolds or coordinate systems 
which is identifiable with the subclass of the reference frames of special 
relativity. Because the Einstein equations can be formulated within the d- 
space formalism (Heller et al., 1989), the d-space (M, C, G) may also be 
interpreted in the context of general relativity. On making the transition 
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from manifolds to d-spaces, the set of Solutions of the Einstein equations is 
generalized to include solutions which are not diffeomorphic to R n. In this 
sense, the d-space (M, C, G) represents a two-dimensional massless solution 
of a generalized form of Einstein's vacuum field equations (Heller et al., 1989 ) 

R v = 0 

where R v is the Ricci tensor. (M, C, G) is not diffeomorphic to R 2. The most 
striking implication therefore is the lack of general validity of Einstein's 
equivalence principle, as in the foregoing discussion axiom (iii) has nowhere 
been made use of. However, it seems that at least in the case of the restricted 
model under consideration, axiom (iii) is not needed in order to establish 
the basic structures of special and general relativity. 

In full analogy to the common structure of special and general relativity, 
one may demand for other (not massless) solutions of the generalized form 
of the Einstein equations that they are locally diffeomorphic to (M, C, G). 
This demand characterizes a class of spacetimes which are nowhere diffeo- 
morphic to R 2, but do locally possess properties of macrophysical spacetime. 

Summarizing, a (1 + 1)-dimensional spacetime model has been con- 
structed which is nowhere diffeomorphic to R 2 but possesses structures of 
the common (1 + 1 )-dimensional Minkowski spacetime. The model in its 
d-space representation (M, C, G) is mathematically treatable. As has been 
shown, the d-space (M, C, G) may be considered as defining a class of 
discrete spacetimes within the framework of a generalized form of general 
relativity, which without being processed by a coarse graining possesses 
properties familiar from macrophysical spacetime. However, at this stage, 
the question of significance of those spacetimes remains open. In particular, 
since (M, C, G) is dense, one probably cannot hope these spacetimes to cure 
the divergence problem of quantum field theories. 
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